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LEITER TO THE EDITOR 

Renormalisation-group results for bond and site percolation 
in two and three dimensions 

Theodore W Burkhardti- and B W Southern 
Institut Laue-Langevin, BP 156, Centre de Tri, 38042 Grenoble Cedex, France 

Received 7 August 1978 

Abstract. Critical exponents and probabilities are calculated for bond and site percolation 
on the d = 2 square lattice and the d = 3 BCC lattice. The calculation exploits the 
relationship between the percolation problem and the s-state Potts model in the limit s + 1. 
The s-state Potts model is analysed using Kadanoff’s variational renormalisation trans- 
formation. Results for the critical exponents and critical couplings of the s-state Potts 
model in the interval O< s < 1 are also presented. 

A variety of real-space renormalisation-group techniquiques has been applied to the 
percolation problem. The calculations of Harris er a1 (1975) and of Dasgupta (1976) 
utilise the mapping of the bond-percolation problem onto the s-state Potts model in the 
limit s + 1 (Kasteleyn and Fortuin 1969). In the approaches of Young and Stinchcombe 
(1975), Kirkpatrick (1977), Reynolds er af (1977, 1978), Sarychev (1977), and Yuge 
and Murase (1978) the probabilities rather than an effective spin Hamiltonian are 
rescaled directly using decimation or site-cell transformations. 

Reynolds et a1 (1978) have shown that the site-cell transformation is capable of 
extremely accurate predictions when combined with Monte Carlo methods so that very 
large cells can be considered. Of the non-Monte Carlo calculations Dasgupta’s work 
(Dasgupta 1977), in which the s-state Potts model is analysed with Kadanoff’s varia- 
tional transformation (Kadanoff 1975, Kadanoff et a1 1976), yields the best values for 
the critical exponents and couplings. Dasgupta considered bond percolation on the 
d = 2 square lattice. Recently, Giri et af (1977) and Kunz and Wu (1978) have shown 
that the site-percolation problem can be related to a Potts model with z-spin inter- 
actions in the limit s + 1, where z is the coordination number of the lattice. Using this 
equivalence and following a procedure similar to Dasgupta’s, we have calculated critical 
exponents and probabilities for bond and site percolation on the d = 2 square lattice and 
the d = 3 BCC lattice. 

For details of the Kadanoff variational transformation as applied to the s-state Potts 
model we refer to Dasgupta (1976, 1977). Our treatments of the bond and site 
problems differ only in the initial renormalisation transformations we perform. After 
the initial transformation the Kadanoff transformation as discussed by Dasgupta is 
applied repeatedly in both cases. One finds the same fixed point and hence the same 
critical exponents for bond and site percolation. 

In the bond-percolation problem the starting Potts Hamiltonian contains nearest- 
neighbour couplings of the form KbSulo2 where the S is a Kronecker delta and the spin 
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variables ui take the values 1,2 ,  . . ., s. To avoid problems associated with an extra 
relevant variable at the fixed point of interest, we initially perform an exact decimation 
transformation eliminating half the spins in order to enter the invariant ‘symmetric 
subspace’ (Burkhardt 1976, Knops 1977) of the Kadanoff transformation. In the 
square-lattice calculation the decimation leaves a square lattice with expanded lattice 
constant. In the BCC calculation the decimation eliminates the spins on one of the two 
simple-cubic sublattices, leaving a simple-cubic lattice. 

In the site problem the initial Hamiltonian contains r-spin interactions of the form 
Ks8~~,) .02, , . , , , z  on the covering lattice of the original lattice of the site problem (Giri et a1 
1977, K u x  End Wu 1978). The generalised Kronecker delta is dcfined to be 1 if its z 
indices are identical and zero otherwise. For site percolation on the square lattice the 
covering lattice is square, with four-spin interactions in half of the elementary squares, 
as shown in figure 1. For BCC site percolation the covering lattice is simple cubic, with 
eight-spin interactions in one-fourth of the elementary cubes. The initial trans- 
formation we perform for the site problem is a Kadanoff variational transformation 
which differs slightly from the usual form of the transformation since the r-spin 
interactions are not present in every elementary hypercube. Locating the cell spins as 
shown for d = 2 in figure 1 and shifting the many-spin interactions into the ‘blue 
hypercubes’ produces an effective interaction in the blue hypercube which is a factor 2 
times the original interaction instead of the usual factor z = 2d for interactions initially 
present in all the elementary hypercubes. 

Figure 1. Covering lattice for the d = 2 square lattice site-percolation calculation. Initially 
there are four-spin interactions in all the squares with crosses or B’s at the centre. The 
crosses indicate cell spins and the B’s label ‘blue’ squares. Shifting the four-spin interactions 
into the blue squares produces an effective interaction which is twice the initial interaction. 

Following Dasgupta (1976), in computing critical exponents and critical couplings 
we fixed the variational parameter x in the Kadanoff transformation at the value which 
maximises af/as at  the fixed point, where f is the Gibbs free energy. One maximises 
df/as rather than f since f becomes independent of s in the limit s + 1 .  The x *  
determined in this manner is the value to which the function n*(s), obtained by 
maximising f at the fixed point with respect to x with s fixed, tends as s + 1. 

The free energy (or at/&) can be further maximised by allowing the variational 
parameter to change each time the renormalisation transformation is applied instead of 
using the same value in successive applications, as we have done. However, van 
Leeuwen (1978), van Saarloos et a1 (1978) and den Nijs and Knops (1978) have shown 
that this procedure leads to an optimum variational parameter which is a singular 
function of the coupling constants at the fixed point, so that the renormalisation 
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transformation is also singular at the fixed point. By fixing x at its optimal value at the 
fixed point, we avoid the non-analyticities and follow the procedure which has yielded 
the best values for the Ising critical exponents (Kadanoff 1975, Kadanoff er a1 1976). 
However, there is some inconsistency in basing the calculation on a variational principle 
but not using the principle as fully as possible. 

Our results for the percolation problem are summarised in table 1 and compared 
with the values obtained by other methods. Except for pS all the renormalisation-group 
results given for d = 2 were first obtained by Dasgupta (1976). The critical exponents 
for d = 2 calculated with the Kadanoff method agree very impressively with the other 
estimates. For d = 3 the series and Monte Carlo estimates are less precise than for 
d = 2. However, the Kadanoff transformation again seems to yield critical exponents 
which differ by no more than a few per cent from their exact values. All of the critical 
probabilities calculated with the Kadanoff method are somewhat too high. The largest 
discrepancy (about 14%) in the case of p ;  for d = 2 may be a consequence of fixing the 
variational parameter at its optimum value at the fixed point in each application of the 
renormalisation transformation. This is a good approximation close to the fixed point 
but a poorer approximation farther away. In the bond-percolation calculation the exact 
initial decimation carries the critical Hamiltonian quite close to the fixed point, but in 
the site-percolation calculation this is not the case. Presumably, introducing an 
independent variational parameter in each application of the renormalisation trans- 
formation would improve the results for the critical probabilities. 

Table 1. Calculated values of the critical exponents a, . . . , v ;  of the critical probabilities 
p: = 1 - exp(-K:) and pz = 1 - exp(-K;) for bond and site percolation, respectively; and 
of the optimum variational parameter x * .  The values in parentheses are exact results or best 
series or Monte Carlo estimates taken from the summary by Stanley (1977) except where 
otherwise noted. 

d = 2 square lattice d = 3 BCC lattice 

a -0.683 (-0.668 * 0.004) -0.678 (-0.58i0.11') 
P 0.139 (0.138 i 0.007) 0.445 (0.42 * 0.06,0.39* 0.02) 
Y 
S 18.3 (18.0*0.75) 5.02 (5.0*0*8) 

0.86+0.05') 

2.405 (2.38* 0.02, 2.43 * 0.03) 1.79 (1.66* 0.07, 1.70*0.11, 1.8* 0.005) 

Y 1.34 (1.34k0.02, 1.32::::; 0,893 (0.83 + 15Ap,* 0.01, 0.825 +50Ap,* 0.02, 

P: 0.518 6) 0.190 (0.178b, 0.1785*0.002d) 
P,' 0.676 (0.590', 0~593*0~002') 0.257 (0.243b, 0.245 f: 0.004d) 

1.25 0.557 ..* 

a. Kirkpatrick (1976, 1977) 
b. Shante and Kirkpatrick (1971) 
c. Sykes et al (1976a) 
d. Sykes et a1 (1976b) 

Dasgupta (1977) and den Nijs and Knops (1978) have studied the x-state Potts 
model in two dimensions as a function of s using the Kadanoff variational method. The 
approximation method fails to give a first-order transition for s > 4 as predicted by the 
exact considerations of Baxter (1973). We have found that the Kadanoff method also 
always predicts a second-order transition for the s-state Potts model in three dimen- 
sions. Southern (1978) had previously verified this up to s = 6. 
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Figure 2. Exact and calculated values of the critical nearest-neighbour coupling K', 
calculated value of the critical indices y, and y h  for the Potts model on the square lattice in 
the interval O < s < l .  

For arbitrary s the duality property of the Potts model yields the exact formula 
(Potts 1952, Kihara er a1 1954) K'= ln(1 + J s )  for the critical nearest-neighbour 
coupling on the square lattice. Since K'+ 0 as s + 0, one might hope to obtain results 
for the percolation problem with a weak-coupling expansion about s = 0. Kunz and van 
Leeuwen (Kunz 1977) have examined the predictions of the Migdal recursion formula 
(Migdal 1976, Kadanoff 1976) for small s. In figure 2 we show results of the Kadanoff 
variational method in the interval 0 < s < 1. The calculated K', which is systematically 
larger than the exact value, appears proportional to J s  as s + 0 on a logarithmic plot. 
The critical indices y, and )+, also approaches the values 0 and 2 for s = 0, respectively, 
with leading corrections proportional to Js, just as predicted by the Migdal recursion 
relation. For d = 3 the Migdal formula predicts leading corrections which are linear in s. 
Because of numerical difficulties perhaps associated with the large number of coupling 
constants in the Kadanoff resursion relation, we were unable to track the fixed point for 
d = 3 to small enough values of s to see the asymptotic form of the leading corrections. 

We have seen that the Kadanoff variational method, which yields critical exponents 
and critical couplings with surprising accuracy for a variety of models, is also quite 
successful in predicting results for the percolation problem in two and three dimensions. 
However, the approach is not without disturbing features. As with other real-space 
renormalisation-group methods the approximations involved are uncontrolled, and it is 
not clear to what extent the impressive predictions of critical exponents are fortuitous. 
We have already referred to the difficulties encountered in trying to improve the 
method by optimalising with a different variational parameter at each step. Although 
the approach of Reynolds er a1 (1978) to the percolation problem requires Monte Carlo 
numerical techniques, it has the advantages of permitting systematic improvement of 
the approximation and error estimates. 

Note added in proof. Exact dual and decimation transformations may be used to replace 
the starting Hamiltonian in the square-lattice site-percolation problem, which contains 
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four-spin interactions in half of the squares, by an equivalent Hamiltonian with 
four-spin couplings in every square (to be published). The coupling strengths K, and k, 
of the original and equivalent four-spin interactions satisfy exp (-Ks) = 1 - exp (-I?,). 
Prefacing Kadanoff’s recursion relation with these exact transformations instead of the 
initial bond-shifting approximation described above leads to a considerably improved 
result for the critical probability for site percolation. One obtains p s  = 0.569. 
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